Резистор
Резистор — один из самых простых электронных компонентов. Вместе с тем, без резисторов не обходится практически ни одна схема. Казалось бы, что важного он делает — только сопротивляется току, и больше ничего? Но не всё так просто. В этой статье собраны все базовые знания о резисторах, необходимые электронщику.
Содержание статьи:
- Общие сведения о резисторах
- Закон Ома
- Как измерить сопротивление
- Параллельное и последовательное соединение резисторов
- Применение: делители напряжения и тока
- Рассеиваемая мощность
- Устройство резистора
- Паразитные характеристики
- Переменные и подстроечные резисторы
- Другие типы резисторов
Общие сведения
Резистор, или сопротивление, относится к пассивным компонентам электрических цепей. Пассивный — значит, не привносящий в цепь дополнительную энергию. В отличие от, например, транзистора — который способен усиливать слабый сигнал, добавляя к нему энергию от более мощного источника питания.
Резистор оказывает сопротивление идущему через него току. В качестве механической аналогии можно представить трубу с водой. Резистор — сужение на этой трубе, замедляющее поток. Из-за сужения по трубе будет проходить меньше воды в единицу времени.
Сужение в трубе, замедляющее поток
Резистор обозначается на схеме вытянутым прямоугольником, с двумя выводами. Обычно каждому резистору присваивается буква R с порядковым номером. Иногда в зарубежной литературе можно встретить обозначение ломаной линией.
Два варианта обозначения резистора на схемах
Резистор и закон Ома
Главная характеристика резистора — его сопротивление. Оно измеряется в Омах. А ток, проходящий через резистор, зависит от приложенного напряжения. Перечисленные величины связаны законом Ома. При этом в случае идеального резистора ток линейно зависит от напряжения, то есть резистор обладает линейной вольт-амперной характеристикой:
Вольт-амперные характеристики двух резисторов и закон Ома
Как измерить сопротивление резистора
В лаборатории радиолюбителя для измерения сопротивлений должен быть омметр. Обычно, эта функция входит в состав комбинированных приборов, мультиметров. Между тем, принцип измерения сопротивления основан всё на том же законе Ома: омметр прикладывает к тестируемому резистору небольшое напряжение и замеряет ток, после чего вычисляет сопротивление.
Измерение сопротивления с помощью мультиметра. В данном примере взят резистор 20 кОм.
Кстати, об этом нужно помнить, тыкая омметром в схемы: на схему попадает небольшое напряжение, которое для чувствительных деталей может оказаться фатальным.
Параллельное и последовательное соединение резисторов
Резисторы нужны в схеме, чтобы упрявлять токами и напряжениями. Но сначала нужно разобраться, как они взаимодействуют между собой и с другими элементами схемы.
Если соединить несколько резисторов последовательно, через каждый из них будет течь одинаковый ток. Это логично: сколько зарядов вошло в цепь, столько же должно выйти на другом конце, закон сохранения заряда. А вот напряжение (потенциал) распределяется по-разному. Чем выше сопротивление резистора, тем больше на нём падение напряжения — нужно большее усилие, чтобы протолкнуть через большое сопротивление заряды.
При этом, если просуммировать потенциал на всех резисторах, сумма будет равна напряжению, приложенному к концам цепи. Отсюда выводится формула суммарного сопротивления цепочки из последовательных резисторов: оно равно сумме сопротивлений всех резисторов.
Последовательное соединение резисторов
При параллельном соединении резисторов картина иная. Здесь фиксировано напряжение — оно одинаковое на каждом резисторе. А вот ток будет разный — он потечёт туда, где ему легче пройти. Опять же, применяя несложные рассуждения и используя закон Ома, выводится формула общего сопротивления параллельно соединённых резисторов.
Параллельное соединение резисторов
Более сложные, смешанные соединения резисторов разбиваются на небольшие блоки, и так последовательно, от меньших к большим блокам считается общее сопротивление:
Сложное соединение резисторов. Сначала считаем блок R1,R2 (параллельные), потом к этому блоку добавляем последовательно R3, наконец, считаем параллельно R1,R2,R3 и R4. Если каждое сопротивление по 10 Ом, общее сопротивление получается 6 Ом.
Нужно добавить, что иногда разбить схему на блоки невозможно. В этом случае применяется более сложный метод расчёта, основанный на правилах Кирхгофа.
Применение резисторов в схемах
Итак, как же с помощью резисторов управляют напряжениями и токами? Допустим, стоит задача ограничить напряжение на нагрузке. Под «нагрузкой» здесь может пониматься любой элемент или узел схемы, на котором мы хотим получить заданное напряжение или заданный ток. Это могут быть и лампочка, и светодиод, и следующий каскад усилителя и т. д.
Самое простое — поставить последовательно с нагрузкой гасящий резистор. Как мы обсуждали выше, в этом случае напряжение распределится между элементами в соответствии с сопротивлением каждого. То есть, получается делитель напряжения.
Схема делителя напряжения, когда нагрузка является элементом делителя.
А что делать, если сопротивление нагрузки очень велико или не постоянно? В этом случае ставят два последовательных резистора, образующих плечи делителя. А нагрузка снимает напряжение с одного из них. Подчеркну, что всегда нужно помнить про сопротивление нагрузки. Оно должно быть достаточно большим, чтобы им можно было пренебречь при расчёте делителя.
Схема делителя напряжения, когда нагрузка подключена параллельно нижнему плечу делителя
Если последовательное соединение резисторов является делителем напряжения, нетрудно догадаться, что паралелльное соединение — делитель тока. На рисунке приведён способ ограничить ток через нагрузку — поставить параллельно ей резистор, так называемый шунт. Который будет отвевлять на себя часть тока, обратно пропорциональную его сопротивлению.
Схема делителя тока
Мощность резистора
Резистор сопротивляется проходящему току. Значит, он отбирает у тока часть энергии. И куда она девается? Переходит в тепло. Мощность, рассеиваемая на резисторе, считается по формуле P = U*I. Поскольку U, I и R связаны законом Ома, можно записать несколько вариантов этой формулы, выражая мощность через U и R, или через R и I. Кстати, на сайте есть онлайн-калькулятор мощности и закона Ома.
Так вот, если ток через резистор слишком велик, из-за большой рассеиваемой мощности резистор перегреется и выйдет из строя, в буквальном смысле, сгорит. В этом случае нужно взять резистор такого же номинала, но рассчитанный на бОльшую мощность рассеивания. Более мощные резисторы и физически большего размера, чтобы увеличить площадь рассеивания тепловой энергии.
Там, где это важно (где ожидаются сравнительно большие токи), на схемах указывают, на какую мощность должен быть рассчитан резистор, с помощью следующих обозначений:
Допустимая мощность рассеивания резистора
Устройство резисторов
Из школьного курса физики мы знаем, что сопротивление проводника определяется его удельным сопротивлением, длинной и сечением.
Формула сопротивления проводника
В начале статьи приводилась механическая аналогия резистора, как сужения трубы. Это работает и в элекрике: если уменьшить сечение проводника, его сопротивление увеличится.
Поэтому, резисторы делают из тонкой проволоки, из тонких плёнок разных металлов и сплавов, из композитных материалов. При этом, чтобы увеличить эффективную длину, в резистивном слое нарезают различного вида спирали и канавки:
Очень условно показано устройство резистора. Слева: на поверхности цилиндрической основы резистора слой токопроводящего материала, в котором нарезаны канавки для увеличения сопротивления. Справа: плёночный вариант.
Паразитные характеристики
Но, такой подход, кроме плюсов, даёт ещё и некоторые минусы. Дело в том, что реальный резистор, в отличие от идеального, обладает не только сопротивлением, но и некоторой индуктивностью и ёмкостью. То есть схема реального резистора выглядит примерно так:
Схема замещения резистора
Ёмкость и индуктивность - паразитные характеристики резистора, они искажают его функции в схеме. И само по себе устройство резистора может являться причиной этих паразитных свойств. Спиральные канавки в резистивном слое - чем не витки катушки индуктивности? А между близко расположенными участками проводящего слоя возникает ёмкость.
Хотя эти индуктивность и ёмкость небольшие по величине, но в некоторых ситуациях (например, на высоких частотах) способны вносить заметные искажения.
Поэтому, при изготовлении резисторов применяют различные ухищрения, чтобы снизить паразитные характеристики. Например, нарезают канавки хитрым рисунком. Впрочем, эта тема уже выходит за рамки данной статьи.
Переменные и подстроечные резисторы
Иногда в схеме необходимы резисторы с переменным сопротивлением. Они являются элементами настройки и управления.
Различают переменные резисторы (обычно их ручку выводят на панель управления) и подстроечные (которые регулируются отвёрткой на плате и к которым нет доступа, пока не разобрать корпус устройства). Вот как они выглядят:
Переменные и подстроечные резисторы
У них три вывода. Между двумя крайними постоянное сопротивление. А средний "скользит" между ними. Таким образом, получается готовый делитель напряжения, с регулируемым сопротивлением плечей.
Если средний вывод соединить с одним из крайних - получится реостат, резистор с переменным сопротивлением.
Другие типы резисторов
В заключение остаётся упомянуть некоторые специфичные типы резисторов. Например, теримистор. Его сопротивление зависит от температуры, и этот тип резисторов широко используется в электронных термометрах и схемах контроля температуры.
Или, фоторезистор. Его сопротивление зависит от освещённости.
Варисторы - уменьшают своё сопротивление при росте приложенного напряжения. Могут использоваться в схемах защиты и стабилизаторах.
Добавить комментарий