21 июня 2020 - Admin

Биполярный транзистор: устройство и принцип работы

биполярный тразистор

Биполярный транзистор - полупроводниковый прибор с тремя выводами, широко применяемый в радиоэлектронных схемах. Первый биполярный транзистор создан в 50-х годах XX века. Его изобретение стало венцом попыток найти более компактный и удобный аналог вакуумного триода. Благодаря появлению транзисторов схемотехника сделала большой шаг вперёд: громоздкую вакуумную лампу, к тому же требующую для работы высокого напряжения, удалось заменить на прибор размером с горошину. В дальнейшем, технологии позволили на одном малюсеньком кристалле полупроводника формировать сразу десятки и сотни транзисторов, что дало начало появлению электронных микросхем и развитию современной электроники. Впрочем, довольно вводных слов, перейдём к делу.

Устройство и принцип работы

Биполярный транзистор состоит из трёх чередующихся полупроводниковых зон с разной проводимостью. В зависимости того, как расположены эти зоны, существует два типа транзисторов: p-n-p (прямой проводимости) и n-p-n (обратной проводимости). К каждой из зон подключён свой вывод, выводы называются одинаково для обоих типов транзисторов: средний вывод — база, а по краям эмиттер и коллектор.

Устройство транзисторов p-n-p и n-p-n

Устройство транзисторов p-n-p и n-p-n и обозначение на схемах

Как мы увидим в дальнейшем, в создании электрического тока внутри транзистора участвуют два вида зарядов: электроны и дырки. Отсюда и название «биполярный». Далее я буду писать просто «транзистор» для простоты изложения, но, нужно помнить, что существуют и униполярные (полевые) транзисторы, речь о которых пойдёт в отдельной статье.

Если вы знакомы с устройством полупроводникового диода, вы заметили, что транзистор, можно сказать, представляет собой два  диода, включенных навстречу друг другу, с одной общей зоной. Давайте для определённости возьмём p-n-p транзистор и подключим его следующим образом:

Подключение p-n-p транзистораПодключение p-n-p транзистора

На переход база-эмиттер (эмиттерный переход) подано прямое напряжение, этот диод открыт и через него течёт ток. А вот на коллекторном переходе напряжение запирающее: на коллекторе «минус» относительно базы. Если бы это были два изолированных диода, то на этом бы дело и кончилось. Но! Поскольку зона n общая, тут вступает в силу закон диффузии. Часть дырок, поставляемых эмиттером, не рекомбинирует с электронами базы, а проникает в область коллекторного p-n перехода, и там захватывается мощным минусом «коллектора». В коллекторной цепи тоже появляется ток.

По описанию может показаться, что в коллектор попадает небольшая часть дырок. Но в реальности всё наоборот: только малая часть эмиттерного тока ответвляется в базу, рекомбинируя там с электронами. Большая же часть (грубо говоря,  больше 90%) дырок идут в коллектор и создают коллекторный ток. Это становится возможным потому, что рекомбинация — сравнительно долгий по времени процесс, и дырки успевают заполнить всю область базы и попасть под влияние потенциала коллектора.

При этом сильный коллекторный ток зависит от слабого базового. Ну а если на базу подать запирающее напряжение, «плюс» относительно эмиттера, то ток база-эмиттер вовсе прекратится, а следом исчезнет и коллекторный ток.

Кстати, теперь должны стать понятны названия выводов транзистора. Эмиттер — эмитирует, поставляет заряды (в нашем примере — дырки). Коллектор их собирает, стягивает своим мощным потенциалом. Ну а база так называется потому, что в первых точечных транзисторах она конструктивно была основой прибора. Сейчас точечные транзисторы уже не применяются, их вытеснили более технологичные плоскостные приборы, а название осталось.

Осталось отметить, что все приведённые выше рассуждения применимы и для n-p-n транзисторов, только нужно поменять знаки напряжений на обратные: транзистор n-p-n открывается «плюсом» на базе относительно эмиттера, ну а на коллекторе должен быть плюс относительно базы.

Усилительные свойства транзистора

Должность усилителя — одна из основных «работ» транзистора в электронных схемах.  И выше было показано, что слабый сигнал на базе позволяет управлять в разы более мощным коллекторным током, создавая на коллекторе более мощную копию базового сигнала. Но тут нужно чётко понимать, что сам по себе транзистор не усиливает сигнал и не может получить энергию из ниоткуда, по волшебству. Для создания мощной копии он берёт энергию источника питания. Можно ещё сказать, что от величины базового тока зависит сопротивление коллекторного p-n перехода. Ну а уж какой окажется ток, будет определяться напряжением источника питания и сопротивлением нагрузки (разумеется, все эти параметры должны находиться в допустимых пределах).

Конструктивные особенности транзистора

Из приведёных выше схематических рисунков не очень понятно, чем же эмиттер отличается от коллектора? В принципе, некоторые транзисторы будут работать, даже если при подключении перепутать эмиттер и коллектор местами. Но давайте взглянем на рисунок, более приближенный к реальной конструкции транзистора, а заодно разберёмся, почему он сделан так а не иначе.

Конструкция транзистора (схемотично)

Конструкция транзистора (схематично)

Вот несколько соображений на эту тему:

  • Площадь коллекторного p-n перехода должна быть побольше, для более эффективного захвата зарядов.
  • Коллекторная зона легируется слабо, то есть там сравнительно мало свободных зарядов на единицу объёма — это позволяет прикладывать к коллекторному переходу гораздо большее напряжение, чем к эмиттерному, без риска пробоя коллекторного перехода.
  • Эмиттерная зона, наоборот, легируется сильнее, для более эффективной инжекции зарядов. Но это и делает эмиттерный переход более «нежным». Особенно он боится обратного (запирающего) напряжения: для p-n-p это плюс на базе относительно эмиттера. В некоторых схемах даже ставится специальная защита - обычно с помощью диода.
  • В коллекторе меньше свободных зарядов, сопротивление его выше, к тому же коллекторный переход работает в режиме обратного смещения. Всё это приводит к тому, что на нём выделяется основное тепло. Это тоже аргумент в пользу того, чтобы коллекторная зона была побольше, для эффективного рассеивания тепловой энергии.
  • К слову, база тоже легируется слабо. База должна быть тонкой по двум причинам. Во-первых, для более эффективной диффузии зарядов, инжектируемых эмиттером. Во-вторых, для большего быстродействия транзистора: чтобы коллекторный ток как можно быстрее реагировал на изменение базового. Но при этом сопротивление базы должно быть высокое, чтобы не было пробоев напрямую между коллектором и эмиттером.

Все эти меры позволяют «выжать» из транзистора максимальный коэффициент усиления. Это величина, которая показывает соотношение между коллекторным и базовым током. У различных транзисторов коэффициент может варьироваться от десятков до сотен и даже тысяч.

Основные параметры транзистора

Один из важнейших параметров транзистора, коэффициент усиления, уже упоминался. Он определяет усилительные способности транзистора, во сколько раз коллекторный ток может быть больше базового. Впрочем, можно также вводить понятия коэффициента усиления по напряжению и по мощности, поэтому при чтении справочников нужно быть внимательным: какой именно коэффициент там приводится.

Многое зависит от области применения транзистора. В маломощных чувствительных усилителях важен коэффициент усиления. В высокочастотных каскадах — предельная частота, на которой ещё сохраняются усительные способности транзистора. Существование предельной частоты обусловлено скоростью работы транзистора, а также ёмкостью коллекторного перехода, которая на высоких частотах начинает играть заметную роль (мы помним, что активное сопротивление конденсатора уменьшается с ростом частоты). Ну а в выходных каскадах мощных усилителей уже не так важны усиление и частота, и на первый план выходят допустимые токи и напряжения.

Поэтому промышленность выпускает множество различных моделей биполярных транзисторов с характеристиками на любой вкус. А оригинальные решения, комбинирующие в одной схеме транзисторы с разными характеристиками, разной проводимостью, позволяют буквально творить чудеса и решать весьма нетривиальные задачи.

При чтении справочников следует обращать внимание на предельные значения, коих у транзистора целый веер. Например, предельно допустимое напряжение коллектора, предельный ток коллектора и предельная мощность. Предельное напряжение базового перехода, предельное обратное напряжение. И так далее. Причём, нужно избегать соблазна рассчитать предельно допустимую мощность как произведение предельного тока и предельного напряжения. По отдельности транзистор способен выдержать предельный ток и предельное напряжение, но если попытаться загнать его в такой режим, когда достигнуты оба этих показателя одновременно — транзистор выйдет из строя. Поэтому, всегда указывают предельную мощность отдельно. Часто можно расширить границы допустимой мощности, установив на транзистор теплоотводящий радиатор.

Отдельно стоит сказать про такой параметр, как неуправляемый обратный ток коллектора. Он создаётся собственными свободными зарядами, которые в небольшом количестве есть в любом полупроводнике. Этот ток не управляется «командами» с базы, кроме того, он сильно зависит от температуры, и способен внести существенные помехи в полезный сигнал.

Поделиться в соцсетях:

Добавить комментарий