20 января 2020 - Admin

Диод

подключение диода

Если упрощённо, диод — это прибор, которой проводит ток только в одном направлении. На рисунке представлено обозначение диода на схеме. У него два вывода: катод и анод. Если на аноде достаточно большой «плюс» относительно катода, через диод течёт ток. Если же диод включён в обратной полярности, ток через него течь не будет.

Принцип действия полупроводникового диода

В настоящее время наиболее распространены полупроводниковые диоды, поэтому, в первую очередь, познакомимся именно с этим типом приборов.

Классический полупроводниковый диод представляет собой кристалл полупроводника (обычно, кремния или германия), в котором с помощью введения специальных примесей созданы две области: с n-проводимостью и с p-проводимостью. Подробнее теория полупроводников изложена в этой статье. Посмотрим, что будет, если к этому прибору подключать внешнее напряжение в разной полярности.

принцип действия полупроводникового диода

Принцип действия полупроводникового диода

Если плюс подключен к аноду, к p-зоне, он отталкивает положительно заряженные дырки к области p-n перехода, где они встречаются с отрицательно заряженными электронами, отталкиваемыми минусом с анода. В p-n переходе происходит рекомбинация электронов и дырок (электрон, встретившись с вакантным местом, дыркой, просто занимает его; формально при этом и дырка и свободный электрон исчезают). Через диод течет ток. А внешний источник питания продолжает поставлять и дырки и электроны в полупроводник, на замену рекомбинировавшим парам, так что ток не прекращается.

Посмотрим, что будет при обратной полярности. Минус на аноде оттянет дырки от области p-n перехода. То же самое произойдёт с электронами в n-области. Таким образом, в зоне p-n перехода практически не останется свободных зарядов, которые могли бы поддерживать ток, и диод будет «закрыт».

Вольт-амперная характеристика диода

В Википедии даётся такое определение диода: это электронный элемент, обладающий нелинейной вольт-амперной характеристикой. Что же это такая за характеристика, да ещё нелинейная?

Как следует из названия, вольт-амперная характеристика показывает зависимость тока от напряжения. По сути, это график на плоскости с осями U (напряжение, измеряется в вольтах) и I (сила тока, измеряется в амперах).

Теперь, с нелинейностью. Хм, а вообще, бывает ли линейная вольт-амперная характеристика? Да, бывает. У резистора. Его ещё называют пассивным сопротивлением. Ток напрямую связан с напряжением: повысили напряжение и ток увеличился, понизили — уменьшился. И связь эта линейная, описывается всем известным законом Ома. Если построить график зависимости тока от напряжения, это будет прямая линия, а угол её наклона будет зависеть от величины сопротивления резистора.

А вот у диода вольт-амперная характеристика далеко не прямая, поэтому и говорят: нелинейная. Выглядит она примерно так:

Вольт-амперная характеристика диода

Вольт-амперная характеристика диода

Другими словами, сопротивление диода зависит от величины и полярности приложенного к нему напряжения. При прямом включении (плюс на аноде) сопротивление мало, при обратном — велико.

Применение диодов

Такие свойства позволяют диоду работать в электронных схемах на тех участках, где есть переменное напряжение, меняющее полярность:

  • в детекторах, выделять низкочастотную составляющую из высокочастотного сигнала
  • в выпрямителях блоков питания — здесь диод помогает превратить переменное напряжение в постоянное (точнее, пульсирующее)
  • для защиты устройств и отдельных узлов от «неправильной» полярности действующего напряжения.

Основные параметры диодов

В справочнике по диодам можно найти с десяток параметров. Здесь не буду перечислять все, отмечу лишь, что в зависимости от функций диода в данном конкретном устройстве обычно важны только некоторые из этих параметров.

Например, в выпрямителях смотрят на максимально допустимое обратное напряжение (в момент обратного полупериода, когда диод заперт, к нему приложено достаточно высокое напряжение) и на максимально допустимый прямой ток. Превышение одного из этих параметров может привести к выходу диода из строя.

Для высокочастотных устройств важна максимальная частота переключения диода. В некоторых схемах используется факт падения напряжения на диоде при прямом включении, и тогда нужно смотреть на такой параметр, как прямое напряжение при заданной силе тока.

"Родственники" диода

Стоит также кратко упомянуть особые типы диодов. Например, стабилитрон — это диод, работающий в области обратной ветви вольт-амперной характеристики. Он используется как «поставщик» заранее известного напряжения, поскольку оно практически не зависит от величины протекающего через стабилитрон тока.

Полупроводниковые приборы, обозначение на схемах

Полупроводниковые приборы, обозначение на схемах

Также, наверное, всем известны светодиоды — они способны превращать энергию рекомбинации электронов и дырок в p-n переходе в световое излучение. Причём, с гораздо большим КПД, чем, например, превращает электрическую энергию в свет лампа накаливания, благодаря чему светодиодные лампы оказываются весьма экономичны.

Обратный пример — фотодиод, его характеристики зависят от интенсивности света, который попадает на полупроводниковый кристалл.

Объединив свето- и фото-диод в одном корпусе, получим оптопару. Она помогает «развязать» участки схемы: между ними уже не будет электрического контакта, а сигнал будет передаваться светом. Обычно это делается в целях безопасности, например, чтобы высокое напряжение с силового блока ни при каких обстоятельствах не попало на низковольтные управляющие схемы.

Ещё один интересный тип диодов — варикап. Тут используется тот факт, что p-n переход имеет ёмкость, свободные заряды в области n и в области p являются как бы обкладками конденсатора. При этом, ёмкость такого конденсатора меняется в зависимости от величины приложенного к варикапу напряжения.

Поделиться в соцсетях:

Добавить комментарий