4 ноября 2020 - Admin

Простой генератор прямоугольных импульсов на логических элементах

Схема генератора на CD4011BE

На рисунке приведена простейшая схема генератора на логических элементах. Ничего лишнего: времязадающая RC-цепочка и микросхемка.

Данное устройство собрано на микросхеме CD4011BE (отечественный аналог К561ЛА7). Она содержит в себе 4 логических элемента 2И-НЕ. Сразу вспомним, что элемент 2И-НЕ имеет два входа, и сперва применяет к двум входным сигналам операцию И, а затем результат инвертирует (операция НЕ). Вот табличка логики:

Вход 1 Вход 2 Выход
0 0 1
1 0 1
0 1 1
1 1 0


Впрочем, на схеме входы элементов соединены друг с другом. Это значит, что нам от элемента нужна только операция НЕ. Один элемент инвертирует сигнал, то есть поворачивает его на 180 градусов. Значит, два последовательных элемента повернут сигнал на 360 градусов = 0 градусов. Это как раз и требуется: для работы генератора должна обеспечиваться положительная обратная связь, то есть сигнал с выхода должен попадать на вход в «фазе», чтобы поддерживать сам себя.

Принцип работы

Допустим, после включения питания на входе DD1.1 установился низкий уровень. Значит, на выходе будет высокий уровень, который попадает на вход DD1.2, на выходе которого, в свою очередь, будет опять низкий уровень. Конденсатор C1 разряжен. И он начинает заряжаться через резистор R1, который правым выводом подключён к выходу DD1.1 — к точке, где потенциал высокий.

Принцип работы: процесс заряда конденсатора

Процесс заряда конденсатора C1

Вы вправе спросить: почему же этот ток не утекает на вход элемента DD1.1 - ведь на этом входе в данный момент низкий потенциал? Кажется, что логический элемент должен скушать весь ток, а конденсатору ничего не достанется. Ответ: дело в высоком входном сопротивлении элементов DD. На их входы ответвляется мизерная часть тока, которой можно пренебречь. Кстати, благодаря этому факту, сопротивление R1 может быть достаточно большим, несколько мОм,  что позволяет получить довольно низкие частоты генерации.

Итак, постепенно напряжение на C1 растёт, и в какой-то момент на левой обкладке накопится достаточный "плюс", который переключит DD1.1 в состояние 1 на входе, 0 на выходе. Тут же и DD1.2 поменяет состояние на противоположное: 0 на входе, 1 на выходе. И процессы в RC-цепочке пойдут в обратную сторону, до тех пор, пока напряжение на конденсаторе снова не переключит DD1.1, а за ним DD1.2 и весь цикл повторится сначала. Описание несколько упрощённое (вблизи момента переключения там происходят чуть более сложные процессы), но достаточное для первоначального понимания.

Пробуем на практике

Как вы уже поняли, частота генератора определяется параметрами времязадающей RC-цепочки: от сопротивления резистора и ёмкости конденсатора будет зависеть, сколько времени будет длиться заряд/разряд конденсатора. Примерная формула такова:

формула расчёта частоты генератора: f=0.7/(R1*C1)

Верхняя частота генератора ограничена скоростью переключения КМОП-элементов (условно, порядка 2 МГц). При этом и на низких частотах генератор работает уверенно:

  • С1 . . . . . . . 1 мкФ
  • R1 . . . . . . . 680 кОм
  • f . . . . . . . .  1 Гц.

Схема собрана на макетной плате. Чтобы увидеть работу генератора, я подключил к его выходу светодиод через токоограничивающий резистор. Считается, что микросхема этого типа может выдерживать выходной ток до 6.8 мА, так что вполне способна засветить не очень мощный светодиод без дополнительного ключа на транзисторе. Вот что получилось:

Ну а вот как выглядит сигнал генератора на осциллограмме:

Осциллограмма выходного сигнала генератора

Осциллограмма выходного сигнала генератора


Улучшение схемы

Как можно было бы доработать эту схему? Вот некоторые соображения.

Частота такого генератора весьма нестабильна. Для исправления этого недостатка часто заменяют конденсатор на кварцевый резонатор нужной частоты, а также пропускают сигнал ещё через один-два элемента 2И-НЕ.

Для регулировки частоты можно постоянный резистор заменить на подстроечный, а также добавить переключатель и несколько конденсаторов, чтобы менять ёмкость. Однако, как и в любой схеме, есть ограничения на номиналы деталей. Например, сопротивление R1 не может быть менее 1 кОм.

Более интересная задача — регулировка скважности. В приведённой схеме длительность импульса равна длительности паузы, скважность 50%. А что если мы хотим короткий импульс и длинную паузу, или наоборот? Тогда нужно последовательно с R1 прицепить примерно такую конструкцию:

генератор на логических элементах с регулировкой скважности

Схема регулировки скважности

Здесь заряд и разряд конденсатора идут через разные плечи R2 благодаря диодам VD1 и VD2, так что соотношение импульса и паузы будет разное в зависимости от положения движка R2.

Поделиться в соцсетях:

Комментарии (18)

8 февраля 2024 - Александр

Спасибо за статью. Я собрал эту схему на элементах НЕ (CD4049) с конденсатором 10 нФ и резистором 1 кОм, и получил частоту 47600 Гц. Т.е. близко к коэффициенту 0.48, как приводил Павел. Скважность получилась примерно один к двум.

Ответить

Добавить комментарий